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The results obtained in [l, 21 are complemented by an assertion on asymptotic 
stability uniform with respect to {to, zO} , and also are extended to the 
problems of asymptotic stability with respect to a part of the variables and of 

optimal stabl~zation with respect to a part of the variables. 

1. Let there be given a system of differential equations of perturbed motion 

x’ = x (t, x), x (t, 0) ZE 0, x E R" (1.1) 

whose right hand sides are continuous in domain 

t>oo, IIXll<H>O (1.2) 

and satisfy therein the uniqueness conditions for the solution. Ma&in [l] showed that 
if two positive-definite functions v (t, X) and w (i?, X) exist for system (1. l), 

the first of which admits of an infinitesimal upper bound and whose derivative 7’ (t, 
x) relative to system (1.1) satisfies the condition 

v’ (t, x) + w (t, x)%&qM]<u =z 0 as t * 00 (I.31 

for any two numbers h and lr such that 0 < h < p < H, then the unperturbed 
motion x = 0 is stable. Massera [Z], analyzing this result, proved that when the 

hypotheses of Malkin’s theorem [l] are fulfilled, equiasymptotic stability (also called 
[3] asymptotic stability uniform in x, ) obtains, 

It is proved below that under the fulfilment of Ma&in’s hypotheses [l] asymptotic 
stability uniform in {t o, x,} obtains; this result is then used in application to the 

problem of stability relative to a part of the variables [4]. 
We prepresent vecotor x as 

X = ($53 * * *T Ym, %t . . ., %f, m > 0, p > 0, n = m + p I 

and we assume that: a) in the domain 

t > 0, 11 y It d H > 0, II 2 II -C +a (1.4) 

the right hand sides of system (1.1) are continuous and satisfy the uniqueness conditions 
for the solution x = x(t; to, x,) defined by the initial conditions X (to; &, 
X0) = X0; b) the solutions of system (1.1) are z -continuable. In addition, we 

assume that for any T > 0 there exists L (7’) > 0 such that the condition 

11 x (t, x’) - x (t, x”) \I < L 11 x’ - xs II (1.5) 

is fulfilled in the domain 0 < t < T, II XII Q w 

T h e o r e m 1. Assume that functions T’ (t, x) and W (t, X) exist, 
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satisfying in domain (1.4) the inequalities 

a (II y II) < T/’ (t, x) < b (II Y II) (1. f-2 
w (k XI > c (II Y II) (1.7) 

where a (T), b (r) and c (I”) are continuous functions increasing monotonically 
when r E IO, HI and vanishing when T = 0; also, let the condition 

V’ (t, XI + w (6 X)MIIUII<P, o+Jl<m = 0 as t-too (1.8) 

be fulfilled for any h and p such that 0 < h < p < H . Then motion x = 0 
is asymptotically y-stable uniformly in {to, x0). 

Proof. 1) Let us show that motion x = 0’ is y-stable uniformly in to 
Cl]. Let a E (0, H) be given. Accord~g to (1.8) and (I.?), for numbers h = 
b-i (a (8)) (b-’ is the function inverse to b) and p = E we can find T (E) > 

0 such that the inequality v’ (t, x) < 0 is fulfilled in domain b-’ (a (E)) < 

II YII < 6 for au t > T (E) . By virtue of (1.5) the solutions depend continu- 
ously on the initial conditions and, consequently [5 - 71, we can choose S (E, T 
tiio; 6 (~1, 0 < 6 (4 < b-’ (a (Ek such from 11 x0 II < 6, to e to, T) 

II x (t; to, xo) II < bWi (a (E)) iand, therefore, II Y (G to, XO) II < 
b-l (a (E))) for all t CFG [t8, Tl. Let us show that it Y (t: to, Xo) 11 < E 

for all t > t0 if only to > 0, 11 x0 II < 6. By the choice of number 6 (a) , 
to do this it is enough to prove that from to > T (4, \I yo II < b-’ (a (4) fomxa 
If y (t; to, x0) II < E for all t > to- 

Let to > T (E), 11 yoI/ < b-* (a (E)); then, according to(l.6)t V(to, x0) < 

b (b-i (a (8))) = a (E). Let us show that 

V (t, x (t; to, x0)) < a (13) for all t > to (1.9) 

We assume, to the contrary, that V (t, x (t; lo, x0)) < a (E) when t cz [to, td, but 
V (tI, x (tz; to, x0)) = a (e), and, consequently, V’ (tl, x (tl; to, x0)) > 0. According 

to (1.6), t-l (a fef) < II y (tI; to, x0) [I f e and since tr> !F (4, V’ @I, x @I; to, 
x0)) < 0, which leads to a contradiction. On the basis of (1,6), from (1.9) it foll- 
ows that II y (t; to, x0) II < c for all t > to. 

N o t e. We have in fact proved that for any E > 0 we can find T (E) > 0 
such that 

V’ (6 x) IV@, x)=a(e) < 0 for all t>T (1.10) 

2) tit us show that the motion x = 0 is uniformly y-attracting, i. e., with 
a specified 6 (E) > 0, for any a E (0, 6) th ere exists z (a) > 0 such that from 

to > 0, II x0 II < 6 follows II y (t; to, x0) II C a for an t > to + ‘c (4. 
Let a E (0, 6) be given; by hypothesis (see (1.8) and (1.7)) T (a) > 0 exists 

such that for t > T (a) and bmi (a (a)) < II y II < E (a < 6 (8) < b-’ 
(a (E)) < 8) we have 

V’ (t, x) < --‘/,c (b-’ (u (a))) (1.11) 

and, consequently. 
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v’ (t, x) Iv(t, x)=a(a) < 0 for t > T (4 (1. 12) 

We set to’ = to’ (a) = max {to, T (a)}, 71 (a) = (2b (E) - a (a)) / 

c (b-’ (a (a))). Let us show that an instant t, E (to’, to’ + al (a)) exists 
for which 

V (t*, X (t*; to, X0)) < a (a) (1.13) 

We assume to the contrary that the inequality V (t, x (t; t,, x0)) > a (a) holds for 

all t E (to’, t,’ + z1 (a)) . Then on this time interval 11 y (t; to, x0) (I> b-1 (U (cc)), 
and, consequently, by virtue of (1. ll), V’ (t, X (& to, x0)) f -‘/*c (b-1 (a (a))), 
and from the relation 

follows 
o<a(a)\<V(tol+Zl(a),x(t0’+2,(a);t0,%))= 

to’+% (a) 

v GO’, x (to’; to, x0)) -I- 
$ V’ ce 9 x (4; to, xc)) dS d 

b (e) - V2c (b+ (a (cc))): (a) = V,a (a) 

which is impossible. On the basis of (1.12) we conclude from (1.13) that V (t, X (t; 

t,, x0)) < a (a) for all t > t, and, therefore, 1) y (t; t,, x0) 11 < a for t > 
t Consequently, 11 y (t; t,, x,,) 11 < a for any t > to + T (a) > t,, 

T*(OL) = T (a) + ,cl (a). 
where 

The theorem has been proved. 
In particular, let m = n; then we have the valid 

Theorem 2. For the asymptotic stability, uniform in {t,, x,,} , of motion 

x=0 it is sufficient, and under the condition that the right hand sides of system 
(1.1) and their partial derivatives with respect to the coordinates are continuous and 
bounded in domain (1.2) also necessary, that there exist two positive-definite functions 
V (t, x) and W (t, x), the first of which admits of an infinitesimal upper bound, 

and that relation (1.3) be fulfilled for any h and cc, 0 < h < p < H . 

p r o o f. The sufficiency follows from Theorem 1. Let us prove the necessity. 
Under the conditions imposed on the right hand sides of system (1.1) there exists, as 
Ma&in showed [8,9], a positive-definite function V (t, X) admitting of an infinite- 

simal upper bound and having a negative-definite derivative V’@, x) . Having set 

w(t, x)= --v’ (t, x), we obtain two functions satisfying the hypotheses of 

Theorem 2. Q. E. D. 
Together with system (1.1) we consider the “perturbed” system 

x*’ = X (t, x*) + R (t, x*), R (t, 0) E 0 (1.14) 

relative to which we assume the fulfilment of conditions a), b) and (1.5). 

Theorem 3. Assume that a function V (t, X) exists, satisfying inequali- 

ties (1.6), whose derivative relative to system (1.1) v’ (t, x) < -c (11 y II), and 
that the condition 
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a’ (” ‘) -R (t, X)XQI~II~, OSJMIC~ 2 0 ax as t-00 (1.15) 

is fulfilled for any h and yc such that 0 < h < p < ff . Then the motion 
X* = 0 of system (1.14) is asymptotically y* -stable uniformly in {t,, x0*}. 

The statement follows from Theorem 1 because the derivatives of function V (t, 
X) relative to system (1.1) and (1.4), denoted Vtl)’ (t, x) and IL) (G X) f 

respectively, are connected by the equality 

V(,, (t, x) = V;,, (t, x) + a~ r; ‘) . R (t, x) 

If function v (t, X) has bounded partial derivatives dV//ax, then, obviously, con- 
dition (1.5) can be replaced by 

R (t, X)K~~IKP, OGHJC= = 0 as t+=oo 

2. We consider the controlled system 

x‘= X(t,x,u), UER’ (2.1) 

whose control performance index is understood as the condition of minimum of the 

integral [ 101 

J = [+Wl.Wl)& O>O 

Controls u (t, x), continuousin domain (1.4), for which system (2.1) with u = 
u (t, x) satisfies conditions a) and b) from Sect. 1, are looked upon as admissible 

controls. If a certain class K = {u (t, x)} of admissible controls u (t, x) has 

been chosen, we speak of optimal y -stabilization in class li: [ll]; since the case 

being examined class K coincides with the whole set of admissible controls, we 

speak of optimal y -stabilization, omitting the words “in class K *. Following [ lO& 

we adopt the notation 

B[V,t,x,u] = G-t -g- *X(t,X,U)+@(t,% 4 

T he or e m 4. Assume that functions V (t, x), w (t, X) and u” (t, X) 

exist, pdssesslng the following properties: 
1) for any T > 0 there exits ,!, (T) > 0 such that the condition 

II x (8, X’, no (t, X’)) - x (t$ x”, u* @, x”)) 11 =G L II X’ - X” II 

is fulfilled in domain 0 < t < T, 1) x II < H ; 
2) function V (t, x) satisfies inequalities (1.6). while w (t, X) satisfies 

inequality (1.7); 
3) the relation 

- 0 (& X, u” (t, X)) + W (t, X)k,+mr. O~~l<m = 0 as t -+ 00 

is valid for any h. and p: 0 < h < p < ff ; 
4) B [V, t, x, xi’ (t, x)1 = 0; 
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5) B [V, t, x, ul > 0 for any u. 
Then function u = u0 (t, X) solves the optimal y -stabilization problem. 

P r o o f. By virtue of 1) - 3) the functions V (t, x) and w (t, x) satisfy 
hypotheses of Theorem 1 for system 

x’ = x (t, x, u” (t, x)) 

the 

and, consequently, the motion x = 0 of this system is asymptotically y-stable 
u~formly in (to, x,}. Let u* (t, x) be some admissible control ensuring the asympt- 
otic y -stability of the motion x = 0 of system (2.1). By virtue of the second of 
inequa~ties (1.6) 

\p~ I’ (t, x0 [t]) = fimp V (it x* ft]) = 0 
4 

Hence, according to [Il.]. follows the result required. 
In analogous fashion, using the results in [xl] and the many well-known theorems 

on asymptotic y -stability, we can obtain a number of optimal y -stabilization 

criteria, just as Theorem 4 was obtained from Theorem 1. 

The author thanks V. V. Rumiantsev for attention to the work. 
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